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COMPUTER-ATDED ANALYSIS OF NONLINEAR NETWORKS
by

Thomas E. Stern
Department of Electrical Engineering

Columbia University

1. INTROD'CTION

As the importance of digital electronies continues to grow
so too does the need for computer-aided analysis of the highly
nonlinear networks that are typical of current pulse and digital
circuit technology.

In principle the time domain analysis of nonlinear networks is
simply a matter of solving a set of simultaneous nonlinear differ-
ential equations; presumably a routine task for a digital computer.
As we shall show, however, there are certain characteristies of
the types of networks mentioned above which pose some special
difficulties not normally encountered in other areas of application.
Some of these difficulties manifest themselves in the formulation
of the equations of the networks and others appear in integrating
these equations. Furthermore. when one attempts to circumvent
difficulties at one stage, they often reappear later in a different
guise.

The purpose of this paper is to present a computaticnal
technique which avoids certain problems commonly encountered in
existing methods. (Much of the theoretical basis for this technique
has been described in an earlier paper. [1]) In Section 2 we il-

lustrate the general characteristics of a computer-based approach
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ro nonlinear network analysis by means of & simple example.
Section 3 is devoted to a brief critique of some represerntariove
approaches to the problem. In Section 4 a new computaticnal
method based on "augmentation™ is described. Some experiments
comparing this method with a widely used existing compater pro-
gram are described in Section. 5. In Section 6 some of the open

questions concerning the method of augmentation are disri-sed.

2. CHARACTERISTICS OF THE COMPUTER-BASED APPROALH
It is helpful to consider the network analysis problesr in tiaee

phases:

1y Modelling

2) rquation formulation

3} Numerical solution
As we shall see, the choice of alternatives at cdch step has a
direct‘effect on the implementation of subsequen: steps. Bevsise
of this, the network analysis problem must be considered in {rs
entirety without isolating one step from ancther. ,

The astable transistor multivibrator shown in Fig. I wili =
used as an illustrative example throughout the paper. Ciearly ohe
first step in the analysis must be t¢ choose an appropriate mode!
for the transistors. Two possible alternatives are shown in Pig.
23, b. The first, a low frequency model containing no reactive
»lements would seem to be appropriaste for examining the goass
teatures of circuit behavior — esserntially all features g2yt
the detailed shape of the leading and trailing sdgss ¢f “he
wave forns For a closer approximetion of the high-trevaency

effects {e.g. risevime) the s2cond high-frequency acdel wiolad Lo
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more suitable. Let us observe the consequences cf each of these
choices in implementing step (2), equation formulation.

The state variable formulation of the network equations is ih2
obvious choice in a computer-based analysis. Several more ar less
equivalent methods of deriving these equations are available. [2,
3, 4] Considering first, the low frequency transistor modei and

choosing the charges x, and x, on capacitors €, and C

1 2 1
2s state variables, we obtain the following equations

2 respectively

LU, Lyl 1/ * \
X, T Z\U, ~U.~x=+ E)+ 35U, ~u. ~x=+u., 2f {x; u) { Lat
1 RV 5 1 ) RB\ 3 5 C1 6/ 17
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0= fz(x: U) - FE(U. Ue) + -gR-B-C—] - 03 - u€ + u5> + TRI\UQ - u, E“
...96(", uj (LEY

where the vari
vransistor models. (See Fig. 3.) Note that these equations are pgh
in state variable form, but rather in the form of differential eq§a~
¢ions plus constraints, containing certain auxiliary variables

u = (u3 <o u6¥ as well as the state variables x = (xl, xzﬁﬁ



-4 -
This is a fundamental characteristic of the equations of any lumysd
network, ahd thus a canonical form for the network equations may

be taken as
x = f(t, x, u) {2a})
0 =g(ty, x, u) {2b}

where x represents a set of n state variables, u a set of
k auxiliary variables, (2a) a set of n first order differentia;
equations and (2b) a set of k constraint equations.

If we were to use the high frequency transistor modei (intrs-
ducing the additional capacitances shown dotted in Fig. 3y Eg. (1)
would be modified to the form

X, = fl(x, u) {3a}
>’<2 = £,(x, 1) £ 3b)
Uy = - 4%, u) {3a)
u, = 1 {(x, u) (3d)
4 5€1u4§ GglXs Rl
; = ] 4 3
Ug * q;ﬁg) gs(x, u) {3e}
. _ 1 e
ug = szﬁgy gelxs w) (3£

Note that the only difference between Eq. (2) based on the
low frequency model and Eq. (3) based on the high frequency mede!l
is that the auxiliary variables have now become state variables
and the constraint relations have now become differential equations.
The consequences of the two alternative choices of transistor
model become apparent in attempting to solve the network equatliois.

Consider first, the general constrained form (2) which results fiom



-5 -
the low frequency model. Since these equations cannot be integrated
by standard numerical methods, an obvious approach would be to at-
tempt to eliminate the constraints by solving (2b) for
u=h{t, x) {4}
and substituting (4) into (2a) to give

x = £[t, x, h(t, x)]

which is in the normal state variable form

x = F(t, x) {%)
If this operation can be performed uniquely (that is, if a unique
solution (4) of the constraint equations exists) and if “he re-
sultant differential equations possess unique solutions defined i~
the future for all initial states, we shall say that the networyk

equations are determinate. Otherwise they shall be called in-

determinate. The question of determinacy of the network equat ioss
is ce;%fgi fb any aﬁiiyﬁis‘problem, computer-based or otherwise,
for unléss the equations are determinate it is doubtful whether
they have any meaningful physical interpretation. The cru: of the
problem of determinacy lies in the form of the conztraint equations
(2b). Regarding these we must ask:

a) Does a unique solution of the form (4) exist?

b) If so, how can it be computed?

¢) If not, how can the network be analyzed?

Returning to our example, a little thought will indicate that
it is impossible to know whether & unique solution of Eq. {lc-f£3
exists (much less how to compute it) without knowing the nuwmro ;s
values of the various parameters involved. Moreover, it is well-

known that the combinations of parameters which lead to propes
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multivibrator action are just those which lead te multiple solutions
of the constraint equations. The low frequency transistor mocel in

this circuit therefore necessarily leads to indeterminate equatiuas.

(However, it is well to recall that this is the model generally em-
ployed in most non-computer-based analyses of the multivibrator.)
On the other hand, choosing the high frequency transistor
model we obtain an unconstrained system, albeit one of higher order,
and thus the question of determinarcy does not ariselq T+ might
therefofe appear that it is always desirable to choose a network
model in which the problem of constraints does not occur. This,
in fact, is one fairly common approach used in computer-based
analysis. (See Section 3.) Let us explore the consequences of
this choice a bit further. Considering realistic values of the
tuansistor capacitances, it would not be unusual for the time
constaﬁig;géﬁoéiatgd with these capacitances to be of the order
of nanQSLE6nds while the period of the multivibrator might be of
the order of milliseconds. Thus, the time period over which a
solution is to be computed may be of the order of 106 times the
shortest time constant in the system. Systems of differential
equations having this property have been termed "stiff" systems.
{5] Now, to avoid numerical instability, the stepsize in numeri-
cal integration schemes must generally be kept considerably
smaller than the shortest time constant. Therefore, stiff systems
generally demand extremely large numbers of integration steps,
and can over-tax the capabilities of the fastest computers. Be-

cause conventional numerical integration routines cannot cope

ol system of the form (5) can also be indeterminate if its righc-
hand side does not possess certain smoothness and boundedness
properties. However, this type of indeterminacy normally does
not occur in models of physical systems.




with stiff systems in an efficicnt manner, and because such syscos;
are characteristic of nonlinear =lectronic problems, considerabic
effort has recently been devoted to this subject. [6-10] AZtchouyn
progress has been made in developing algorithms especially suited
to these systems, the problem remains difficult.

To recapitulate, we have illustrated by means of the ewampiz
of the multivibrator, that in the case of highly nonlinecar networks,
depending upon the type of model chosen, one generally clitains a
formulation either in terms of constrained differential equetions,
or stiff systems of differential equations. Each of these altersz-

tives presents special problems at the final stage of the analvsis.

3. CRITIQUE OF EXISTING NETWCORK ANALYSIS PROGRAMS

A large variety of computer programs for network analysis ere
currently available, many of which are in rather widesprzad use.
The way in which the problem of constraints is treated in each of
these programs determines to a large extent its basic strucvure.
Let us therefore digress for a moment te delineate two important
classes of networks in which unique solutions of the constr«int
equations can be found.

1} Linearly reduclble networks: When certain topological

restrictions are fulfilled it can be shown that all constraints
2an be eliminsted by linear operaticns alone {i.e., direct
substivution and matrix manipulation). (Using the low fireguency
transistor model, the multivibrator equations are not linaarly
raducible, but using the high freguency model they ave.)

2% Itervatively reducible networks: In some classes o nec-

*ovks & unique solution of the conatraint equations ¢ 2b; sup be
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shown to exist although it cannot necessarily be expressed in olossg
form. Among these networks one can determine classes in which 2
particular iterative computational algorithm will always conuarge
te the solution of (2b).

It is worth noting; however, that only rather special necwork
configurations f£it into the above two classes.

We shall now classify a representative sample of exiziing
network analysis programs with respect to their handling of the
gonstrainf~pr¢bléuo |

Type A) PRestricted to linearly reducible networks. Certiin

computer programs restrict the admissible models of nonlinesr nsi-
2ork elements in such a way that the resultant networks «<ill npces-
2arily be linearly reduecible. [11, 12] {Focr examplie; these piugrams
would not accept our low frequency transistor model.)

Type{;)wfkestricted to iteratively reducible networks. ising

somewhat less stringent restrictions than employed in (A) shuwe,
some programs (for example [13]) will analyze successfully «il
networks amenable to A certain computational algorithm.

Iype C) Unrestricted. Some programs allow the user to define

network elements in a very general way by means of appropriaste
subroutines. [14, 15] As a result the constraint equations {2} are
in effect hidden within the subroutines. %hus, there is no recog-
nition by the program that these constraints even exist.

Type D) Fixed algorithm, unrestricted networks. Here. some

standard iterative procedure. for example the Newton-Rapivion matinog
i% used to solve the constraint equations. Few restrictinns are

nlaced on the form of these equations.
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Lach of the above types of programs has obvinds npawlecis
Altihoagh types A and B have the 3?3%1&“?.‘&(;@. of puavan eelng
Yrat the constraint equations will be sr‘v-v“: ina rolfahie manver,
they serlousiy Iimit the generalisy of the admissihle nerwoyas,
Purtermore, tie topologlcal restrictions Lmpored often fores
the user o include in the descriprion ¢f a network varicug 1wl
parameters which he may prefer to neglect. (The transisroy cgpad -
tances in the multivibrater cirvcuir are 2 czse in point.) &2 wer
pointed out earlier, the inclusion of small parameter: genepally
ieads to the problem of stiff austems of differentiad wgnariaes.

The limitavions of & program of type € are the most sarin.e,
Since coastraints are not sroperly veeoonized, In the compnars ot
it is poeeiblie to obtain completely srronecits reialtz. & fane

example 1llustrates this polnt. A program of t.pe £ waz uxed 1o

analyze the ci*cuﬁ: of Fzg 4. (Note thar the carrent-con = v

voltage source, V= R I :f.s eq uiwamn* te 2 reslsrer.) I oowoirencs
tv appropriate input data the proaram formulated vapious eepre:-

sions describing the network, amony which was the ztatemsnt:

1. 5

I=="8 R 1’
Ry - A
Y

If this linear constraint relation were treated by, the cumpunyy an
a7 equation it cculd have been sovived for the auxlilary variadtle I
However, it was treated instead as an arithmetic assionmens statrment;

thet 13, each time a new value of T was called Iz, o apesariog
H ‘ "
T(NEW) o o=~ 2 - ROZ{0LD

was exerarted. Thus, in effect, the proscam war performing oo
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iteration on the constraint equation each time a solution of this
equation was called for. This led to éompletely fzlge resulrs
since even a repeated iteration will only converge when mn?«;i

Programs of type (D) can be considered a compromise betwesn
the restricted typeé (A) and {B) and the unrestricted type (T).
Since few restrictions are placed on the constraint equations,
difficulties may be encountered if they do not pessess unique
solutions or if the iteration fails to converge. However, ths
likelihood of erroneous results in type (D) programs is consider-
ably smaller than in type (C) programs.

4. THE METHOD OF AUGMENTATION

We present in this section a method of analysis which au~ilds
the twin problems of eliminating nonlinear constraints and of
solving stiff systems of d:lfferential equations. Iv is based on

augmentation of the network model with elements of infinitesimall:

small values. The discussion will be divided intc three parts:
Pormulation of the network equations
Augmentation of the network model

Numerical solution of the augmented equations

4.1 Equation Formulation. Let the network be described by a

connected graph G in which each branch is classified as either
independent voltage source (V), capacitive (C), resistive (&),
inductive (L) or independent current source (J). It wiil he
4ssumed that:

1) The terminal characteristics of all capacitive branches

sre given in the "charge-controlled” form:

e = £o(ts ap, 9% = i "y
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where €ps Jo» 1¢ are vectors representing respectively the
capacitor voltages, charges and currents. Any capacitsor whose
terminal relation can be written in the form

eci = 84(t) q(,:,_.i where $,{t) >0 v o

will be called a linear positive capacitor (LPC). Osupling is
permitted among all capacitive branches except LIX''s.
2) The terminal characteristics of all inductive L aunsles

sre given in the "flux-controlled” form:
] = ‘(’?v‘
=50 A Ay =e "7

where iL’ ng and e, represent respectively the i{ndactor sucrenrts,
flux-linkages and veltages. Linear positive inductorz (1pPL) ave
defined in the same way &3 LPC's. Coupling is permitted amons 3t
inductive branches except LPL's.

2) The términalAéharaeteristics of the resistive brancles
are given in the form

W= fR(t, ) sy

where each element wy of the vector w and each element Y3 of
is a resistive branch voltage or current, and Y is & current
{voltage) whenever Wy is a voltage (current). We partition *ie

resistive branches into three disfoint classes:

a) Linear positive resistance (LPR), defined as is the LIT.

b) Voltage controlled nonlinear resistance {(VONR) whenewver

the branch is not LPR and w; 1s a current.
¢} Current controlled nenlinear resintance {{TNRY whon
ever the branch is not LPR and w, is a volTage.
We shall call w the controlled variables and vy rthe con-

trelling variables. 7211 elements which are net LPC, LPL or 1P
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will be termed nonlinear even though their terminal relations may
be linear.) Coupling is permitted among all resistive branches
except LPR's. (Note that the classifications VCNR and CCNR are
based on the way the terminal relations are given, even though it
may be possible to express them in other forms.)

4) There are no loops consisting of voltage sources only
or of voltage sources and capacitors only, nor cutsets consisting
of current sources only or current sources»and inductors.

(Certain of these assumptions were made merely tb simplify
the exposition, For example, assﬁmpfion (4) could be partially
relaxéd without any radical change in the results which follow,)

The network equations are obtained by appropriately combining
the terminal relations (6,7,8) with the Kirchhoff law constraints
defined by the graph G. We begin by selecting a "proper tree",
defined to be one whose elements are chosen in the following order
of priority: LPC's, nonlinear capacitors, independent voltage
sources, VCNR's, LPR's, CCNR's, independent current sources,
nonlinear inductors, LPL's. Following [1] the state variables
are chosen as cutset charges q and loop flux linkages A. When
there are no all-capacitor icwps and no all inductor cutsets, each
capacitor charge and inductor flux-lindage constitutes a state
variable. Otherwise the state variables are linear combinations
of these charges and flux linkages. (See Appendix,)

With respect to any proper tree T, we define certain "excess"

elementsl, associating with each excess element an "auxiliary

1 our usage of the term "excess" is somewhat different from that

commonly appearing in the literature,

Y
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variable" as .follows:

Excess elements Auxiliary variables
All nonlinear capacitive chords of T charges Q
All nonlinear inductive branches of T flux linkages A,
All VCNR branches of T voltages ey
All CCNR chords of T currents iz

Note that for an element to be excess it must be nonlinear and
it must appear in a certain topological configuration. (For exampJ:J
a nonlinear capacitor would be excess if and only if it occuar:*eoctizgn an
all-capacitor loop.)

It is now possible to reduce all of the network data by linear

operations only to the form

q=f ot B N Qe Ay ey 1)) (5a)
X =50t @& L Qo Ay 2, 1)) (9b)
omg, @ 1 Qo Mg By 1) (9¢)
0 = g " ) (3d)
0= gy( " ) (9e)
0 =g, " ) (2£)

Note that Eqs. (9) are in the general canonical form (2). ‘The
state variables are x = (q, A), the auxiliary variables, u =
(dgs Ay e, iz), and there are exactly as many constraint equations
as there are auxiliary variables. In fact, there is a one-one
correspondence between constraint equations and excess elements.
A derivation and explicit representation of the functions f and

g in (9) is presented in the Appendix. It is worth noting that
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the selection of the proper tree and formulation of these functions
is a straightforward procedure for a digital computer.

As an example, for the multivibrator with low frequency tran-
gistor model, Eqs. (9) take the form (1) where x = q = (xlg Xz),
the charges on the capacitors Cl and cz, and u = ey = (“5’ gy B :xé}‘:,.
the voltages across the excess VC NR's in the transistor models.

4.2 Augmentation:

As was pointed cut previocusly, the constrained equations (9)
are not in a form suitable for numerical integration. Furthermore,
in the general case; there will be no systematic way of eliminating
the constraints and the auxiliary variables. Therefore; to avaid
the problem of constraints we shall sugment the original retwork

by inserting & number of "stray” network elements of infinitesimallv

small values.. ! me augmentation will be performed in such a way as

to convert- sach .inplicit constraint equation to a differentizl
equation. The procedure is illustrated in Fig. 5. We insert
exactly as many sugmenting elements as there are “excess" elements
in the original network. Each of the four classes of excess clements
requires a different type of augmentation. The case of the excess
VCNR's will be taken as an illustrative example. As shown ina

Fig. 5, each excess VC NR is aucmented by a stray capacitance of
arbitrarily small. positive value &. Before augmentation the ter-
minal characteristic of the element is of the form iy = f (. @ vt}
that is, the current iy through the element may depend on its own
voltage ey 3s well as various other variables. After addition of
the capacitance ¢ the terminal relation becomes

1= v £00 e ")
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Thus, if we now let i  and ey be vectors representing respec-

tively the currents and voitages on all excess VC NR' then the
effect of the augmentation is to add a term of the form e éy to
all equations in which the currents iy appear. It can be seen from
Eq. (A-9e) that these currents appear in (and only in) Eq. (9e), so
that the net result of this augmentation is to add the term « éy
to the left-hand side of Eq. (9e) converting it to a differential
equation. Similar reasoning follows for the other three types of
augmentation illustrated in Fig. 5. The end result is that the
constraint equations (9¢-f) are now converted to the following

differential forn.l

¢ q, = golt, X, u) (10a)
€ A, = gt x, u) (10D)
€ ?y = gy(t, X5 u) (10c)
€ iz"' gz(t: X, u) (104)

Note that the order of the augmented system is equal to the order
cf the unaugmented system plus the number of excess elements. The
augmentation with small stray elements described in Fig. 5 can be
viewed as a physical justification for the conversion of Eq. (9c-fj
to the form (10). However, once the procedure is understood, there
is no need to interpret it in terms of network modification. One
simply identifies the excess elements; formulates the constraints

and adds the appropriate terms to the constraint equations. The

1 1e has been shown [1] that when no coupling is present, the aug-
mentation procedure described is minimal in the sense that the
number of augmenting elements is the least possible that will
eliminate the constraints. When coupling is present other methods
are sometimes required to produce a minimal augmentation.
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canonical form (2) is thus changed by augmentation to

o

= f(t, x, u) (1la)
e u = g(t, X, u) ¢11b})

Returning to the example of the multivibrator, we find that
the four dependent current sources (VC NR'S) are all excess. The
left-hand side of the constraint equations (le-f) associated with
these elements must therefore be augmented by the respective terms
€ 63, ¢ ﬁ4, ) ﬁs, ¢ GG, Note that these terms correspond physically
to the insertion of small capacitances of value ¢ across each of
the excess elements. The resultant equations are therefore almost
identical to Eqs. (3) which were derived using the high frequency
transistor model. (The only differences are the values assigned
to the transistor capacitances.)

The principal justification for the augmentation procedure
outlined above is the fact that every physical network element has
associated with it some "stray" or "parasitic" energy storage or
dissipation which is usually neglected in its mathematical model.
Therefore our augmented network model should be a more realistic
representation of the true behavior of the physical network than
is the constrained model. (More will be said on this subject in
Section 6.) The idea of augmentation is, of course, not new: it
is commonly used to explain the discontinuous behavior of many

types of nonlinear oscillators of the "relaxation” type.

4.3 Numerical Solution of the Augmented Equations. We must now

relate some solution of the augmented system (11) to the behavior

of the physical system originally described by (2). Since the
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parameter € was not even present in the original network model,

it is reasonable to attempt to minimize the differences between
(11) and (2) by considering the limiting behavior of (11) as ¢ = O+
as a "true" representation of the physical network. Thus, if

[x(t, ¢), u(t, e)] represents a solution of (11) for e > 0, we

attempt to determine the limiting solution,

[xO(t), uO(t)] = 1im [x(t, e) u(t, ¢)1  (12)
=0+

At this point we shall assume that a limiting solution (x° ’ u°)
exists for which x has a piecewise continuous derivative and u
is piecewise continuous. (Although systems of the form (11) have
been the subject of considerable study, mainly in the Soviet
literature (16, 17], conditions under which the above assumption is
valid have not been determined in the general case. For further
remarks on this question see Section 6.)

Note that (12) represents, in effect, a solution of an in-
finitely stiff system. From our previous remarks (Section 2) one
might conclude that this would require infinite computation time.
As we shall see, however, it is usually easier to integrate an in-
finitely stiff system than one with finite stiffness.

In computing the limiting solution, we simulate the effect of
infinite stiffness as follows:

5 S — o
Let (xk, “k) represent the computed values of (x, uo} at the

*

k-th time interval. Noting that in the limit as ¢ = O+ the auxil-
iary variables u move infinitely faster than the state variables
X (except when g = 0) we shall call (lla) the "slow equations",

and replace (1lb) at the k-th time interval by the "fast equations"
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B = T g O WO) Ty (12)

How, we compute Ypey 23

® 13 £ 7Y
Uk+1 1j§ u®)

where u{ ") is the solution of the fast equations (13). 7That is,
Y1 i3 determined by holding (t, x} constant {(i.e., suspending the
normal time scaile) and integrating the fast equations to steady
state. Any convenient numerical integration method cen be used
on the fast and slow squations, and of course, some teasonable
criterion must be chos:in to indicate that the sclution of the fast
equations has (approximately) reached a steady state, The practi-
cality of the method depends o a i:irgs extent on how these tasks

are implemented.

5. COMPUTSR RESULTS

The algorithm described in Section 4.3 wes pricrammed for an
IBM 360/75 computer, using a variable astepsize fouwrsh crier Punge
Kutta inteygration scheme for both . (12a) and 112}, B simplified
flow chart cf the program is shewn in Pig. 6. Moee that each time
the program enters the loop for integrating the rast ecuations it
rem3 ins there until the norm of the function 4  in reduweed to a
sufficlentiy small value, indicating that & stesdw state has been
{apoervimpealy) poached,

o P P o B an 5 e P O 7. T g B i g i
“iay sratogare e etfioiang PR3 SR A COREAT AT LDNA L P UNT . TR

; " o E T .o 8 o AR g S e e 4 Loy i
&t iy of the muivivisrater, T (20, were Ll agratad sy The

Drrvyram cexorited Ca Pigo o, wiwere o D00 F S we e rreaiad 3y Tiaet
gt 8 Wt g R ! Py of 4 1raiima
B ~ o8 3 SIS . - i 3

M ‘ 5 % : T o
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The circuit parameters were as follows: (Units: VYolts, mA, ki, pF)

RL = 0.6

R=6
E=10
Cl = 02 = C {varied}
= B -4 40u
C(u) Cg(u) 4 x 10 + 2

e[y 40V, 40v,, \)ﬂ
FolVes V) = 10 [2(@ ~s> - 38@ -1 !

-5 ’40Vé - 40V, I
10 E- 098(5- - 1\ +<e E . l)j
- & -

In order to observe the effect of the stiffness of £q. (%) on

il

the efficiency of the computation, the timing capacitor €, and hence

the period of the multivibrator, was varied as shown in Table 1.
Since the smallest time constant in the circuit is determined by

the transistor capac1tors Cc, £’ which were not modified, and

since the total solution time is proportional to L s the "relative

stiffness™ of the equations is proportional to € as indicated in

Table 1.

A computer-generated plot of collector woltage for a typiczal

run {C = 200 pP) is shown in Fig. 7. Since the transistor switch-
ing time {based on the high frequency model) is abcut 6 nanoseccnds,
the waveform appears to have sharp discontinuities. On a ploet of
this type, the results of the two different computational methods

vere essentislly indistinguishable.

h reasonable compariscn of Tthe relative efficiencies of the

two zethods can e made on the hasis of vhe votal number ¢f individua

5 e e e . .

The toval solution time was chosen o be about 1.78% vimes the
period of the multivibrator in each case.
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function evaluations (NFE) required in each case. (This is a fair
measure of required computation time.) Table 1 gives approximate
NFE's for each case studied. (One evaluation of the righthand side
of one equation is considered to be one function evaluation.) It
can be seen from the table that the NFE increases roughly in pro-
portion to the relative stiffness of the system when conventional
integration is used. On the other hand, using the method discussed
herein, the NFE is effectively independent of the stiffness of the
system, resulting in a dramatic increase in efficiency for the
larger values of C. These results can be extrapolated to show

still more impressive gains in computation time for systems of
larger stiffness.

c 50 200 500
Time interval 750 ns 3000 7500
| Vlétive st%ffnass - 1 4 10
&;g:(COnvéA¥i§;;1xﬁethod) 3.1 26.6  58.7 X 10
NFE (Our method) 4.1 3.9 3.8 { i
‘Table 1

6. CONCLUSIONS:

We have presented a new computational method of analyzing non-
linear networks on a digital computer. The method was designed to
avoid the twin problems of solving constraint equations and/or
integrating stiff systems of differential equations. Some of its
useful features are:

1) It can be applied whether or not the original network con-

straint equations are uniquely solvable. When multiple solutions
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of the constraint equations exist, the procedure will automatically
seek the one which is "correct" on physical grounds. {Subject to
certain qualifications stated below.)

2) It is especially useful in computing discontinuous sclutions.
{Discontinuities or "jump phenomena™ often occur in cases where the
original network model is indeterminate, and are characteristic of
the operation of many types of pulse and digital circuits.)}

3) It avoids the numerical problems associated with stiff
systems of differential equations.

4) 1In cases where one is only concerned with gross features
of network behavior it offers a convenient means of neglecting
"high frequency" effects.

The development of this method is still at a preliminary
stage and many open questions remain. One question is that of the
existence of the limiting solution (12). For the complex systems
to which thiﬂr..ghﬂﬂ 18 noot,su@ted, there is no general way of
predicting the existence and prOperties of the limiting solutions.
A related question, on which almost no work has been done; concerns
the validity ef the proposed numerical computational scheme in
cases where the limiting solution is known to exist. Although
empirical results look promising, it would be useful to study the
properties of the computational algorithm from a theoretical point
of view.

Perhaps the most difficult question, however, pertains tc the
justification of the method of augmentation on physical grounds.
Clearly an infinite variety of augmentations are possible for any
network. Stray elements {both lumped and distributed) of any rela-

tive values can be inserted throughout the model to account for all
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of the mechanisms of energy loss and energy storage. In view of
the fact that the chosen augmentation is somewhat arbitrary, how
can one be sure whether all or only some of the various possible
alternative augmentations will accurately reflect the behavior of
the physical system under study? In certain simple cases it is
possible to prove that all possible augmentations within a given
class have essentially the same behavior. [18] However it
seems unlikely that this can be done in the gencral case. It is,
of course, possible that the behavior of the mathematical model
will indeed be sensitive to the type of augmentation chosen, and
in fact, that limiting solutions may not exist for some types of
augmentations. For example, oscillations may occur in (13) leading
to the non-existence of a steady state and, perhaps, the non-
existence of a limiting solution. The eomputational procedure
will fg;l'ipkthis case. However, this is merely an indication
of théxféct that the'phyéiéal system being modelled must display
the same sensitivity to relative values of its "stray" parameters.
Failure of the computational scheme may therefore be taken as a
warning of some sort of structural instability of the system under
study. Further pursuit of this question would lead us into a
general discussion of the philosophy of mathematical modelling.
Since this would not be appropriate here, we shall close with the
that any uncertainty associated with the validity of the
augmented model is no worse than that associated with the original

unaugrented model.
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Appendix
Derivation of the Augmented Network Equations

A.l Partitioning of Variables

Subject to the assumptions of Section 4, a fundamental
loop matrix Bf based on any proper tree T will take the form

| Y A Q 2
} P ,—-—’\“/-‘/\_\ e e

Cjc: giG 343 v iT|sisiviy:iRir i 4L

Tec Fes

Icc I"cQ
| Tyy fvq |Fw Fry o
= [I,F] = PGR {p-1)
|
| Izz l"zQ sz sz Pzz
| Iy Fsq |Fav|Fay| Fuz
Ian | Faq [FaviFayl Faz (Fas
FaL

where the I's represent identity matrices of appropriate size and
the empty partititions of B¢ correspond to zero submatrices. (It
can be shown that the priority ordering of elements of T always

r
partitioned into the sets C, ¢, °°*, L, defined as follows:

 leads to a2 matrix B_ of this form. The rows and columns of B, are




A2

C - LPC ) .
} Capacitors
@-— Nonlinear /
g — VCNR ')
Y ¢
G—-LPR jResistors >Chords of T
(z)~ CCNR

J ~ Independent current sources

Y — Nonlinear \
A { Inductors
Ciserrsives . . LP L ) )
{ S - LPC } Capacitors )
e 8 — Nonlinear )

V — Independent voltage sources >Branches of T

(¥)- VC NR

R~ LPR Resistors

z { r - CCNR
CEeert o

} Inductors /
/

(The circled symbols indicate excess elements)
The fundamental cutset matrix Qe is derived from Bgs

Q¢ = [- F%, 1] (A-2)
and Kirchhoff's laws are expressed in terms of Bf and Qe as
Bf ey = 0 {XVL)
Q, i.. =0 (XCL)

where eN and iN represent the appropriately ordered branch voltages

and currents respectively.
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A.2 The Constrained Network Equations

In what follows we indicate variables associated with
various subsets of elements by appropriate subscripts. For ex-
ample, AL is a vector (column matrix) whose elements are the
flux linkages in each nonlinear tree branch inductor.

Subject to the above method of partitioning we rewrite
the element terminal relations given in (6), (7), (8) as follows:

(For economy of notation the argument t will be omitted from
all functions.)

Capacitive elements:

eg = S dg y Qo T c es (A-3a)
ey = £.(ag, a)), e, = £ (ag q.) (A-3b)
Inductive elements:
ip =T ap » A, =LA (R-4a)
L, = £,00 2, 1= £,00, 1) (A-4b)
ig=6Gey, e =Rip (A-5a)
ig = fg(eg, ey, ir’ iz)
1, = fyleg ey 1pn 1)) (A-5b)
er = fr(egg ey: irs iz)
e, = fz(eg, ey, irf iz)
Independent sources:
iJ = J’ ev, = V (A-6)
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The state variables x = (q, A), are defined as the cut-

set charges,
t
Qa=q, - fes -t (A-73)
qQ qC cQ %
0
and loop flux linkages
A=A 4+ 0 F A-7b
A . AL+ Fae (A-7b)
AL

The auxiliary variables are

u=fa .r..0e .19 {A-8)
et ety Tz :

From the Xirchhoff law relations implied by (A-1) and (A-2)

we obtain the following canonical form of the network equations:

s _ _ ot t t t _
Q= folx, ) = Fyo Iy + Fpo i)+ Fro Iy + Fyp J (A-9a)

Amfo W= By By Fy ey Bt PV )

0=g,(x, u) =~E, - FcQ EQ (A-9¢c)

0=g,x, u) = -1, + sz IA (A-9d)
- } t t t t

0 gy(x. u) = :ty +E Ty Faoy i+ Fyy IY * Fgy O (A-9¢)

0=g,(x, u) =-E, -F, Ey~F, e -F,E -F,V (A-9)

z "2Q "Q zy 'y zZ

In (A-9) the lower case quantities q, A, iz, ey all

represent state or auxiliary variables. The upper case quantities
Iy, E;» 1), Eq, Eu» Iy Iy, E, all represent explicit functions

of the state and auxiliary variables defined as follows:

Let -
Q]

= -1 < -1 =



Ts

(SN is positive definite, 9 is of the dimension of Ag» and 4,
of the dimension of qs.)

Then, combining Xirchhoff's laws with {A7/%a) and {(aA-3)
and eliminating the linear terminal relations (A-33) we obtain,

| t
E (@ @ Bs | |Snl% * Fog %)
Q 9,7 = = N
? Es £5(ay + Fog s qc)__g
Elds q) = £,(q, + Fig Qs Q) (A-10)
Let
P,y !‘xl'}
= = -l t -1 ]
F,y= N Ty =+ FyLF 1, x-ub
) 2

(T is positive definite, A
of the dimension of 1?"')

1‘18 of the dimension of RY and 12

Then, combining Kirchhoff's laws with (A-7b) and (R-4)
and eliminating the linear terminal relations (A-4a) we obtain

L] TEOq - By dpe 2407

IA(AS )‘z) = = - v
I A= f!(ll - Pyg Xys Ay) (A-11)
let
I"gQ] ] Fay ] ;“Fqﬂ
F = ] - # =
YQ vy =| . v
Faa] | Fay LFG‘V



a6
Frag = [Fape Bppls Fpg = [Fppe Fppds  Fyy = [Fgps Fypl

Let

Let

-1 t -1
GN =[G~ + FGR R PGR] (positive definite)

_ el ot

Then, combining Xirchhoff's laws with (A-3) and eliminat-

-1 (positive definite)

ing the linear teminal relations (A-5a) we obtain

[Ig| [Eg(Eps eys Ips 1))
e W | Ts | ) | Gn(Ez =~ Fgr R Iy) |
(Eg] [Ry(I; + Fgp & Ep) ]
Bp(x» u) = £, ) | £,y eys Ty 1,

Iy(X. u) = fy(El' €. 120 iz) (A-12)

y

Ez(x, U) = fz(Bl’ ey’ 123 iz) (A"].S)
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A.3 Augmentation

From Fig. 5 we note that when the excess elements are

augnented, the expressions @-10, 11, 12, 13) are modified as
follows:

E,L— ¢ qc + Bc

I,~¢ i! + I,

Iy~ ee + 1

E -°¢12+ Ez

Making these substitutions in (A-9) we obtain tha

augmented constraint equations:
€ Elc = E'}'ccxa u)
¢y =g,0x u)
e e"y =g, (% u)

€ iz =g,(x, u)
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